
opusfile
0.4

Generated by Doxygen 1.8.1.1

Tue Aug 20 2013 13:38:33

Contents

1 Main Page 1

1.1 Introduction . 1

1.2 Organization . 1

1.3 Overview . 1

2 Module Index 3

2.1 Modules . 3

3 Data Structure Index 5

3.1 Data Structures . 5

4 Module Documentation 7

4.1 Error Codes . 7

4.1.1 Detailed Description . 8

4.1.2 Macro Definition Documentation . 8

4.1.2.1 OP_FALSE . 8

4.1.2.2 OP_HOLE . 8

4.1.2.3 OP_EREAD . 8

4.1.2.4 OP_EFAULT . 8

4.1.2.5 OP_EIMPL . 8

4.1.2.6 OP_EINVAL . 8

4.1.2.7 OP_ENOTFORMAT . 8

4.1.2.8 OP_EBADHEADER . 8

4.1.2.9 OP_EVERSION . 8

4.1.2.10 OP_EBADPACKET . 9

4.1.2.11 OP_EBADLINK . 9

4.1.2.12 OP_ENOSEEK . 9

4.1.2.13 OP_EBADTIMESTAMP . 9

4.2 Header Information . 10

4.2.1 Detailed Description . 11

4.2.2 Macro Definition Documentation . 11

4.2.2.1 OPUS_CHANNEL_COUNT_MAX . 11

ii CONTENTS

4.2.2.2 OP_PIC_FORMAT_UNKNOWN . 11

4.2.2.3 OP_PIC_FORMAT_URL . 11

4.2.2.4 OP_PIC_FORMAT_JPEG . 11

4.2.2.5 OP_PIC_FORMAT_PNG . 11

4.2.2.6 OP_PIC_FORMAT_GIF . 11

4.2.3 Function Documentation . 12

4.2.3.1 opus_head_parse . 12

4.2.3.2 opus_granule_sample . 12

4.2.3.3 opus_tags_parse . 12

4.2.3.4 opus_tags_init . 13

4.2.3.5 opus_tags_add . 13

4.2.3.6 opus_tags_add_comment . 13

4.2.3.7 opus_tags_query . 14

4.2.3.8 opus_tags_query_count . 14

4.2.3.9 opus_tags_get_track_gain . 15

4.2.3.10 opus_tags_clear . 15

4.2.3.11 opus_picture_tag_parse . 15

4.2.3.12 opus_picture_tag_init . 16

4.2.3.13 opus_picture_tag_clear . 16

4.3 URL Reading Options . 17

4.3.1 Detailed Description . 17

4.3.2 Macro Definition Documentation . 17

4.3.2.1 OP_SSL_SKIP_CERTIFICATE_CHECK . 17

4.3.2.2 OP_HTTP_PROXY_HOST . 17

4.3.2.3 OP_HTTP_PROXY_PORT . 18

4.3.2.4 OP_HTTP_PROXY_USER . 18

4.3.2.5 OP_HTTP_PROXY_PASS . 18

4.4 Abstract Stream Reading Interface . 19

4.4.1 Detailed Description . 19

4.4.2 Typedef Documentation . 19

4.4.2.1 op_read_func . 19

4.4.2.2 op_seek_func . 20

4.4.2.3 op_tell_func . 20

4.4.2.4 op_close_func . 20

4.4.3 Function Documentation . 20

4.4.3.1 op_fopen . 20

4.4.3.2 op_fdopen . 21

4.4.3.3 op_freopen . 21

4.4.3.4 op_mem_stream_create . 22

4.4.3.5 op_url_stream_vcreate . 22

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

CONTENTS iii

4.4.3.6 op_url_stream_create . 22

4.5 Opening and Closing . 24

4.5.1 Detailed Description . 24

4.5.2 Function Documentation . 24

4.5.2.1 op_test . 24

4.5.2.2 op_open_file . 25

4.5.2.3 op_open_memory . 25

4.5.2.4 op_vopen_url . 26

4.5.2.5 op_open_url . 26

4.5.2.6 op_open_callbacks . 26

4.5.2.7 op_test_file . 27

4.5.2.8 op_test_memory . 28

4.5.2.9 op_vtest_url . 28

4.5.2.10 op_test_url . 29

4.5.2.11 op_test_callbacks . 29

4.5.2.12 op_test_open . 30

4.5.2.13 op_free . 30

4.6 Stream Information . 31

4.6.1 Detailed Description . 31

4.6.2 Function Documentation . 31

4.6.2.1 op_seekable . 31

4.6.2.2 op_link_count . 32

4.6.2.3 op_serialno . 32

4.6.2.4 op_channel_count . 32

4.6.2.5 op_raw_total . 33

4.6.2.6 op_pcm_total . 33

4.6.2.7 op_head . 34

4.6.2.8 op_tags . 34

4.6.2.9 op_current_link . 34

4.6.2.10 op_bitrate . 35

4.6.2.11 op_bitrate_instant . 35

4.6.2.12 op_raw_tell . 35

4.6.2.13 op_pcm_tell . 36

4.7 Seeking . 37

4.7.1 Detailed Description . 37

4.7.2 Function Documentation . 37

4.7.2.1 op_raw_seek . 37

4.7.2.2 op_pcm_seek . 38

4.8 Decoding . 39

4.8.1 Detailed Description . 39

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

iv CONTENTS

4.8.2 Macro Definition Documentation . 39

4.8.2.1 OP_HEADER_GAIN . 40

4.8.2.2 OP_TRACK_GAIN . 40

4.8.2.3 OP_ABSOLUTE_GAIN . 40

4.8.3 Function Documentation . 40

4.8.3.1 op_set_gain_offset . 40

4.8.3.2 op_read . 40

4.8.3.3 op_read_float . 42

4.8.3.4 op_read_stereo . 43

4.8.3.5 op_read_float_stereo . 44

5 Data Structure Documentation 47

5.1 OpusFileCallbacks Struct Reference . 47

5.1.1 Detailed Description . 47

5.1.2 Field Documentation . 47

5.1.2.1 read . 47

5.1.2.2 seek . 47

5.1.2.3 tell . 48

5.1.2.4 close . 48

5.2 OpusHead Struct Reference . 48

5.2.1 Detailed Description . 48

5.2.2 Field Documentation . 49

5.2.2.1 version . 49

5.2.2.2 channel_count . 49

5.2.2.3 pre_skip . 49

5.2.2.4 input_sample_rate . 49

5.2.2.5 output_gain . 49

5.2.2.6 mapping_family . 49

5.2.2.7 stream_count . 49

5.2.2.8 coupled_count . 49

5.2.2.9 mapping . 50

5.3 OpusPictureTag Struct Reference . 50

5.3.1 Detailed Description . 50

5.3.2 Field Documentation . 50

5.3.2.1 type . 50

5.3.2.2 mime_type . 51

5.3.2.3 description . 51

5.3.2.4 width . 51

5.3.2.5 height . 51

5.3.2.6 depth . 52

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

CONTENTS v

5.3.2.7 colors . 52

5.3.2.8 data_length . 52

5.3.2.9 data . 52

5.3.2.10 format . 52

5.4 OpusTags Struct Reference . 52

5.4.1 Detailed Description . 53

5.4.2 Field Documentation . 53

5.4.2.1 user_comments . 53

5.4.2.2 comment_lengths . 53

5.4.2.3 comments . 53

5.4.2.4 vendor . 53

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

Chapter 1

Main Page

1.1 Introduction

This is the documentation for the libopusfile C API.

The libopusfile package provides a convenient high-level API for decoding and basic manipulation of all Ogg
Opus audio streams. libopusfile is implemented as a layer on top of Xiph.Org’s reference libogg and
libopus libraries.

libopusfile provides several sets of built-in routines for file/stream access, and may also use custom stream
I/O routines provided by the embedded environment. There are built-in I/O routines provided for ANSI-compliant
stdio (FILE ∗), memory buffers, and URLs (including <file:> URLs, plus optionally <http:> and <https:>
URLs).

1.2 Organization

The main API is divided into several sections:

• Opening and Closing

• Stream Information

• Decoding

• Seeking

Several additional sections are not tied to the main API.

• Abstract Stream Reading Interface

• Header Information

• Error Codes

1.3 Overview

The libopusfile API always decodes files to 48 kHz. The original sample rate is not preserved by the lossy
compression, though it is stored in the header to allow you to resample to it after decoding (the libopusfile
API does not currently provide a resampler, but the the Speex resampler is a good choice if you need one).
In general, if you are playing back the audio, you should leave it at 48 kHz, provided your audio hardware supports
it. When decoding to a file, it may be worth resampling back to the original sample rate, so as not to surprise users
who might not expect the sample rate to change after encoding to Opus and decoding.

https://www.xiph.org/ogg/doc/libogg/reference.html
https://mf4.xiph.org/jenkins/view/opus/job/opus/ws/doc/html/index.html
http://www.speex.org/docs/manual/speex-manual/node7.html#SECTION00760000000000000000

2 Main Page

Opus files can contain anywhere from 1 to 255 channels of audio. The channel mappings for up to 8 channels
are the same as the Vorbis mappings. A special stereo API can convert everything to 2 channels, making it
simple to support multichannel files in a application which only has stereo output. Although the libopusfile
ABI provides support for the theoretical maximum number of channels, the current implementation does not support
files with more than 8 channels, as they do not have well-defined channel mappings.

Like all Ogg files, Opus files may be "chained". That is, multiple Opus files may be combined into a single, longer
file just by concatenating the original files. This is commonly done in internet radio streaming, as it allows the title
and artist to be updated each time the song changes, since each link in the chain includes its own set of metadata.

libopusfile fully supports chained files. It will decode the first Opus stream found in each link of a chained file
(ignoring any other streams that might be concurrently multiplexed with it, such as a video stream).

The channel count can also change between links, but if your application is not prepared to deal with this, it
can use the stereo API to ensure the audio from all links will always get decoded into a common format. Since
libopusfile always decodes to 48 kHz, you do not have to worry about the sample rate changing between
links (as was possible with Vorbis). This makes application support for chained files with libopusfile very
easy.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-800004.3.9

Chapter 2

Module Index

2.1 Modules

Here is a list of all modules:

Error Codes . 7
Header Information . 10
URL Reading Options . 17
Abstract Stream Reading Interface . 19
Opening and Closing . 24
Stream Information . 31
Seeking . 37
Decoding . 39

4 Module Index

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

Chapter 3

Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

OpusFileCallbacks
The callbacks used to access non-FILE stream resources 47

OpusHead
Ogg Opus bitstream information . 48

OpusPictureTag
The contents of a METADATA_BLOCK_PICTURE tag . 50

OpusTags
The metadata from an Ogg Opus stream . 52

6 Data Structure Index

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

Chapter 4

Module Documentation

4.1 Error Codes

List of possible error codes

Many of the functions in this library return a negative error code when a function fails.

This list provides a brief explanation of the common errors. See each individual function for more details on what a
specific error code means in that context.

• #define OP_FALSE (-1)

A request did not succeed.

• #define OP_EOF (-2)
• #define OP_HOLE (-3)

There was a hole in the page sequence numbers (e.g., a page was corrupt or missing).

• #define OP_EREAD (-128)

An underlying read, seek, or tell operation failed when it should have succeeded.

• #define OP_EFAULT (-129)

A NULL pointer was passed where one was unexpected, or an internal memory allocation failed, or an internal library
error was encountered.

• #define OP_EIMPL (-130)

The stream used a feature that is not implemented, such as an unsupported channel family.

• #define OP_EINVAL (-131)

One or more parameters to a function were invalid.

• #define OP_ENOTFORMAT (-132)

A purported Ogg Opus stream did not begin with an Ogg page, a purported header packet did not start with one of
the required strings, "OpusHead" or "OpusTags", or a link in a chained file was encountered that did not contain any
logical Opus streams.

• #define OP_EBADHEADER (-133)

A required header packet was not properly formatted, contained illegal values, or was missing altogether.

• #define OP_EVERSION (-134)

The ID header contained an unrecognized version number.

• #define OP_ENOTAUDIO (-135)
• #define OP_EBADPACKET (-136)

An audio packet failed to decode properly.

• #define OP_EBADLINK (-137)

We failed to find data we had seen before, or the bitstream structure was sufficiently malformed that seeking to the
target destination was impossible.

• #define OP_ENOSEEK (-138)

8 Module Documentation

An operation that requires seeking was requested on an unseekable stream.

• #define OP_EBADTIMESTAMP (-139)

The first or last granule position of a link failed basic validity checks.

4.1.1 Detailed Description

4.1.2 Macro Definition Documentation

4.1.2.1 #define OP FALSE (-1)

A request did not succeed.

4.1.2.2 #define OP HOLE (-3)

There was a hole in the page sequence numbers (e.g., a page was corrupt or missing).

4.1.2.3 #define OP EREAD (-128)

An underlying read, seek, or tell operation failed when it should have succeeded.

4.1.2.4 #define OP EFAULT (-129)

A NULL pointer was passed where one was unexpected, or an internal memory allocation failed, or an internal
library error was encountered.

4.1.2.5 #define OP EIMPL (-130)

The stream used a feature that is not implemented, such as an unsupported channel family.

4.1.2.6 #define OP EINVAL (-131)

One or more parameters to a function were invalid.

4.1.2.7 #define OP ENOTFORMAT (-132)

A purported Ogg Opus stream did not begin with an Ogg page, a purported header packet did not start with one of
the required strings, "OpusHead" or "OpusTags", or a link in a chained file was encountered that did not contain any
logical Opus streams.

4.1.2.8 #define OP EBADHEADER (-133)

A required header packet was not properly formatted, contained illegal values, or was missing altogether.

4.1.2.9 #define OP EVERSION (-134)

The ID header contained an unrecognized version number.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.1 Error Codes 9

4.1.2.10 #define OP EBADPACKET (-136)

An audio packet failed to decode properly.

This is usually caused by a multistream Ogg packet where the durations of the individual Opus packets contained
in it are not all the same.

4.1.2.11 #define OP EBADLINK (-137)

We failed to find data we had seen before, or the bitstream structure was sufficiently malformed that seeking to the
target destination was impossible.

4.1.2.12 #define OP ENOSEEK (-138)

An operation that requires seeking was requested on an unseekable stream.

4.1.2.13 #define OP EBADTIMESTAMP (-139)

The first or last granule position of a link failed basic validity checks.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

10 Module Documentation

4.2 Header Information

Data Structures

• struct OpusHead

Ogg Opus bitstream information.

• struct OpusTags

The metadata from an Ogg Opus stream.

• struct OpusPictureTag

The contents of a METADATA_BLOCK_PICTURE tag.

Macros

• #define OPUS_CHANNEL_COUNT_MAX (255)

The maximum number of channels in an Ogg Opus stream.

Picture tag image formats

• #define OP_PIC_FORMAT_UNKNOWN (-1)

The MIME type was not recognized, or the image data did not match the declared MIME type.

• #define OP_PIC_FORMAT_URL (0)

The MIME type indicates the image data is really a URL.

• #define OP_PIC_FORMAT_JPEG (1)

The image is a JPEG.

• #define OP_PIC_FORMAT_PNG (2)

The image is a PNG.

• #define OP_PIC_FORMAT_GIF (3)

The image is a GIF.

Functions for manipulating header data

These functions manipulate the OpusHead and OpusTags structures, which describe the audio parameters and
tag-value metadata, respectively.

These can be used to query the headers returned by libopusfile, or to parse Opus headers from sources
other than an Ogg Opus stream, provided they use the same format.

• OP_WARN_UNUSED_RESULT int opus_head_parse (OpusHead ∗_head, const unsigned char ∗_data,
size_t _len) OP_ARG_NONNULL(2)

Parses the contents of the ID header packet of an Ogg Opus stream.

• ogg_int64_t opus_granule_sample (const OpusHead ∗_head, ogg_int64_t _gp) OP_ARG_NONNULL(1)

Converts a granule position to a sample offset for a given Ogg Opus stream.

• OP_WARN_UNUSED_RESULT int opus_tags_parse (OpusTags ∗_tags, const unsigned char ∗_data, size_t
_len) OP_ARG_NONNULL(2)

Parses the contents of the ’comment’ header packet of an Ogg Opus stream.

• void opus_tags_init (OpusTags ∗_tags) OP_ARG_NONNULL(1)

Initializes an OpusTags structure.

• int opus_tags_add (OpusTags ∗_tags, const char ∗_tag, const char ∗_value) OP_ARG_NONNULL(1) OP_-
ARG_NONNULL(2) OP_ARG_NONNULL(3)

Add a (tag, value) pair to an initialized OpusTags structure.

• int opus_tags_add_comment (OpusTags ∗_tags, const char ∗_comment) OP_ARG_NONNULL(1) OP_ARG-
_NONNULL(2)

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.2 Header Information 11

Add a comment to an initialized OpusTags structure.

• const char ∗ opus_tags_query (const OpusTags ∗_tags, const char ∗_tag, int _count) OP_ARG_NONNUL-
L(1) OP_ARG_NONNULL(2)

Look up a comment value by its tag.

• int opus_tags_query_count (const OpusTags ∗_tags, const char ∗_tag) OP_ARG_NONNULL(1) OP_ARG_-
NONNULL(2)

Look up the number of instances of a tag.

• int opus_tags_get_track_gain (const OpusTags ∗_tags, int ∗_gain_q8) OP_ARG_NONNULL(1) OP_ARG_-
NONNULL(2)

Get the track gain from an R128_TRACK_GAIN tag, if one was specified.

• void opus_tags_clear (OpusTags ∗_tags) OP_ARG_NONNULL(1)

Clears the OpusTags structure.

• int opus_picture_tag_parse (OpusPictureTag ∗_pic, const char ∗_tag) OP_ARG_NONNULL(1) OP_ARG_N-
ONNULL(2)

Parse a single METADATA_BLOCK_PICTURE tag.

• void opus_picture_tag_init (OpusPictureTag ∗_pic) OP_ARG_NONNULL(1)

Initializes an OpusPictureTag structure.

• void opus_picture_tag_clear (OpusPictureTag ∗_pic) OP_ARG_NONNULL(1)

Clears the OpusPictureTag structure.

4.2.1 Detailed Description

4.2.2 Macro Definition Documentation

4.2.2.1 #define OPUS CHANNEL COUNT MAX (255)

The maximum number of channels in an Ogg Opus stream.

4.2.2.2 #define OP PIC FORMAT UNKNOWN (-1)

The MIME type was not recognized, or the image data did not match the declared MIME type.

4.2.2.3 #define OP PIC FORMAT URL (0)

The MIME type indicates the image data is really a URL.

4.2.2.4 #define OP PIC FORMAT JPEG (1)

The image is a JPEG.

4.2.2.5 #define OP PIC FORMAT PNG (2)

The image is a PNG.

4.2.2.6 #define OP PIC FORMAT GIF (3)

The image is a GIF.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

12 Module Documentation

4.2.3 Function Documentation

4.2.3.1 OP WARN UNUSED RESULT int opus head parse (OpusHead ∗ head, const unsigned char ∗ data, size t len)

Parses the contents of the ID header packet of an Ogg Opus stream.

Parameters
out _head Returns the contents of the parsed packet. The contents of this structure are

untouched on error. This may be NULL to merely test the header for validity.
in _data The contents of the ID header packet.

_len The number of bytes of data in the ID header packet.

Returns

0 on success or a negative value on error.

Return values
OP_ENOTFORMAT If the data does not start with the "OpusHead" string.

OP_EVERSION If the version field signaled a version this library does not know how to parse.
OP_EIMPL If the channel mapping family was 255, which general purpose players should not attempt

to play.
OP_EBADHEADER If the contents of the packet otherwise violate the Ogg Opus specification:

• Insufficient data,

• Too much data for the known minor versions,

• An unrecognized channel mapping family,

• Zero channels or too many channels,

• Zero coded streams,

• Too many coupled streams, or

• An invalid channel mapping index.

4.2.3.2 ogg int64 t opus granule sample (const OpusHead ∗ head, ogg int64 t gp)

Converts a granule position to a sample offset for a given Ogg Opus stream.

The sample offset is simply _gp-_head->pre_skip. Granule position values smaller than OpusHead::pre_-
skip correspond to audio that should never be played, and thus have no associated sample offset. This function
returns -1 for such values. This function also correctly handles extremely large granule positions, which may have
wrapped around to a negative number when stored in a signed ogg_int64_t value.

Parameters
_head The OpusHead information from the ID header of the stream.

_gp The granule position to convert.

Returns

The sample offset associated with the given granule position (counting at a 48 kHz sampling rate), or the special
value -1 on error (i.e., the granule position was smaller than the pre-skip amount).

4.2.3.3 OP WARN UNUSED RESULT int opus tags parse (OpusTags ∗ tags, const unsigned char ∗ data, size t len)

Parses the contents of the ’comment’ header packet of an Ogg Opus stream.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.2 Header Information 13

Parameters
out _tags An uninitialized OpusTags structure. This returns the contents of the parsed

packet. The contents of this structure are untouched on error. This may be
NULL to merely test the header for validity.

in _data The contents of the ’comment’ header packet.
_len The number of bytes of data in the ’info’ header packet.

Return values
0 Success.

OP_ENOTFORMAT If the data does not start with the "OpusTags" string.
OP_EBADHEADER If the contents of the packet otherwise violate the Ogg Opus specification.

OP_EFAULT If there wasn’t enough memory to store the tags.

4.2.3.4 void opus tags init (OpusTags ∗ tags)

Initializes an OpusTags structure.

This should be called on a freshly allocated OpusTags structure before attempting to use it.

Parameters
_tags The OpusTags structure to initialize.

4.2.3.5 int opus tags add (OpusTags ∗ tags, const char ∗ tag, const char ∗ value)

Add a (tag, value) pair to an initialized OpusTags structure.

Note

Neither opus_tags_add() nor opus_tags_add_comment() support values containing embedded NULs, although
the bitstream format does support them. To add such tags, you will need to manipulate the OpusTags structure
directly.

Parameters
_tags The OpusTags structure to add the (tag, value) pair to.
_tag A NUL-terminated, case-insensitive, ASCII string containing the tag to add (without an ’=’

character).
_value A NUL-terminated UTF-8 containing the corresponding value.

Returns

0 on success, or a negative value on failure.

Return values
OP_EFAULT An internal memory allocation failed.

4.2.3.6 int opus tags add comment (OpusTags ∗ tags, const char ∗ comment)

Add a comment to an initialized OpusTags structure.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

14 Module Documentation

Note

Neither opus_tags_add_comment() nor opus_tags_add() support comments containing embedded NULs, al-
though the bitstream format does support them. To add such tags, you will need to manipulate the OpusTags
structure directly.

Parameters
_tags The OpusTags structure to add the comment to.

_comment A NUL-terminated UTF-8 string containing the comment in "TAG=value" form.

Returns

0 on success, or a negative value on failure.

Return values
OP_EFAULT An internal memory allocation failed.

4.2.3.7 const char∗ opus tags query (const OpusTags ∗ tags, const char ∗ tag, int count)

Look up a comment value by its tag.

Parameters
_tags An initialized OpusTags structure.
_tag The tag to look up.

_count The instance of the tag. The same tag can appear multiple times, each with a distinct value, so
an index is required to retrieve them all. The order in which these values appear is significant
and should be preserved. Use opus_tags_query_count() to get the legal range for the _count
parameter.

Returns

A pointer to the queried tag’s value. This points directly to data in the OpusTags structure. It should not be
modified or freed by the application, and modifications to the structure may invalidate the pointer.

Return values
NULL If no matching tag is found.

4.2.3.8 int opus tags query count (const OpusTags ∗ tags, const char ∗ tag)

Look up the number of instances of a tag.

Call this first when querying for a specific tag and then iterate over the number of instances with separate calls to
opus_tags_query() to retrieve all the values for that tag in order.

Parameters
_tags An initialized OpusTags structure.
_tag The tag to look up.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.2 Header Information 15

Returns

The number of instances of this particular tag.

4.2.3.9 int opus tags get track gain (const OpusTags ∗ tags, int ∗ gain q8)

Get the track gain from an R128_TRACK_GAIN tag, if one was specified.

This searches for the first R128_TRACK_GAIN tag with a valid signed, 16-bit decimal integer value and returns
the value. This routine is exposed merely for convenience for applications which wish to do something special with
the track gain (i.e., display it). If you simply wish to apply the track gain instead of the header gain, you can use
op_set_gain_offset() with an OP_TRACK_GAIN type and no offset.

Parameters
_tags An initialized OpusTags structure.

out _gain_q8 The track gain, in 1/256ths of a dB. This will lie in the range [-32768,32767], and
should be applied in addition to the header gain. On error, no value is returned,
and the previous contents remain unchanged.

Returns

0 on success, or a negative value on error.

Return values
OP_EFALSE There was no track gain available in the given tags.

4.2.3.10 void opus tags clear (OpusTags ∗ tags)

Clears the OpusTags structure.

This should be called on an OpusTags structure after it is no longer needed. It will free all memory used by the
structure members.

Parameters
_tags The OpusTags structure to clear.

4.2.3.11 int opus picture tag parse (OpusPictureTag ∗ pic, const char ∗ tag)

Parse a single METADATA_BLOCK_PICTURE tag.

This decodes the BASE64-encoded content of the tag and returns a structure with the MIME type, description,
image parameters (if known), and the compressed image data. If the MIME type indicates the presence of an image
format we recognize (JPEG, PNG, or GIF) and the actual image data contains the magic signature associated with
that format, then the OpusPictureTag::format field will be set to the corresponding format. This is provided as a
convenience to avoid requiring applications to parse the MIME type and/or do their own format detection for the
commonly used formats. In this case, we also attempt to extract the image parameters directly from the image data
(overriding any that were present in the tag, which the specification says applications are not meant to rely on). The
application must still provide its own support for actually decoding the image data and, if applicable, retrieving that
data from URLs.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

16 Module Documentation

Parameters
out _pic Returns the parsed picture data. No sanitation is done on the type, MIME type,

or description fields, so these might return invalid values. The contents of this
structure are left unmodified on failure.

_tag The METADATA_BLOCK_PICTURE tag contents. The leading "METADAT-
A_BLOCK_PICTURE=" portion is optional, to allow the function to be used
on either directly on the values in OpusTags::user_comments or on the return
value of opus_tags_query().

Returns

0 on success or a negative value on error.

Return values
OP_ENOTFORMAT The METADATA_BLOCK_PICTURE contents were not valid.

OP_EFAULT A memory allocation failed.

4.2.3.12 void opus picture tag init (OpusPictureTag ∗ pic)

Initializes an OpusPictureTag structure.

This should be called on a freshly allocated OpusPictureTag structure before attempting to use it.

Parameters
_pic The OpusPictureTag structure to initialize.

4.2.3.13 void opus picture tag clear (OpusPictureTag ∗ pic)

Clears the OpusPictureTag structure.

This should be called on an OpusPictureTag structure after it is no longer needed. It will free all memory used by
the structure members.

Parameters
_pic The OpusPictureTag structure to clear.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.3 URL Reading Options 17

4.3 URL Reading Options

URL reading options

Options for op_url_stream_create() and associated functions.

These allow you to provide proxy configuration parameters, skip SSL certificate checks, etc. Options are processed
in order, and if the same option is passed multiple times, only the value specified by the last occurrence has an
effect (unless otherwise specified). They may be expanded in the future.

• #define OP_SSL_SKIP_CERTIFICATE_CHECK_REQUEST (6464)
• #define OP_HTTP_PROXY_HOST_REQUEST (6528)
• #define OP_HTTP_PROXY_PORT_REQUEST (6592)
• #define OP_HTTP_PROXY_USER_REQUEST (6656)
• #define OP_HTTP_PROXY_PASS_REQUEST (6720)
• #define OP_URL_OPT(_request) ((_request)+(char ∗)0)
• #define OP_CHECK_INT(_x) ((void)((_x)==(opus_int32)0),(opus_int32)(_x))
• #define OP_CHECK_CONST_CHAR_PTR(_x) ((_x)+((_x)-(const char ∗)(_x)))
• #define OP_SSL_SKIP_CERTIFICATE_CHECK(_b)

Skip the certificate check when connecting via TLS/SSL (https).

• #define OP_HTTP_PROXY_HOST(_host)

Proxy connections through the given host.

• #define OP_HTTP_PROXY_PORT(_port)

Use the given port when proxying connections.

• #define OP_HTTP_PROXY_USER(_user)

Use the given user name for authentication when proxying connections.

• #define OP_HTTP_PROXY_PASS(_pass)

Use the given password for authentication when proxying connections.

4.3.1 Detailed Description

4.3.2 Macro Definition Documentation

4.3.2.1 #define OP SSL SKIP CERTIFICATE CHECK(b)

Skip the certificate check when connecting via TLS/SSL (https).

Parameters
_b opus_int32: Whether or not to skip the certificate check. The check will be skipped if _b is

non-zero, and will not be skipped if _b is zero.

4.3.2.2 #define OP HTTP PROXY HOST(host)

Proxy connections through the given host.

If no port is specified via OP_HTTP_PROXY_PORT, the port number defaults to 8080 (http-alt). All proxy parame-
ters are ignored for non-http and non-https URLs.

Parameters
_host const char ∗: The proxy server hostname. This may be NULL to disable the use of a

proxy server.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

18 Module Documentation

4.3.2.3 #define OP HTTP PROXY PORT(port)

Use the given port when proxying connections.

This option only has an effect if OP_HTTP_PROXY_HOST is specified with a non-NULL _host. If this option is
not provided, the proxy port number defaults to 8080 (http-alt). All proxy parameters are ignored for non-http and
non-https URLs.

Parameters
_port opus_int32: The proxy server port. This must be in the range 0...65535 (inclusive), or the

URL function this is passed to will fail.

4.3.2.4 #define OP HTTP PROXY USER(user)

Use the given user name for authentication when proxying connections.

All proxy parameters are ignored for non-http and non-https URLs.

Parameters
_user const char ∗: The proxy server user name. This may be NULL to disable proxy authentication.

A non-NULL value only has an effect if OP_HTTP_PROXY_HOST and OP_HTTP_PROXY_-
PASS are also specified with non-NULL arguments.

4.3.2.5 #define OP HTTP PROXY PASS(pass)

Use the given password for authentication when proxying connections.

All proxy parameters are ignored for non-http and non-https URLs.

Parameters
_pass const char ∗: The proxy server password. This may be NULL to disable proxy authentication.

A non-NULL value only has an effect if OP_HTTP_PROXY_HOST and OP_HTTP_PROXY_-
USER are also specified with non-NULL arguments.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.4 Abstract Stream Reading Interface 19

4.4 Abstract Stream Reading Interface

Data Structures

• struct OpusFileCallbacks

The callbacks used to access non-FILE stream resources.

Functions for reading from streams

These functions define the interface used to read from and seek in a stream of data.

A stream does not need to implement seeking, but the decoder will not be able to seek if it does not do so. These
functions also include some convenience routines for working with standard FILE pointers, complete streams
stored in a single block of memory, or URLs.

• typedef struct OpusFileCallbacks OpusFileCallbacks
• typedef int(∗ op_read_func)(void ∗_stream, unsigned char ∗_ptr, int _nbytes)

Reads up to _nbytes bytes of data from _stream.

• typedef int(∗ op_seek_func)(void ∗_stream, opus_int64 _offset, int _whence)

Sets the position indicator for _stream.

• typedef opus_int64(∗ op_tell_func)(void ∗_stream)

Obtains the current value of the position indicator for _stream.

• typedef int(∗ op_close_func)(void ∗_stream)

Closes the underlying stream.

• OP_WARN_UNUSED_RESULT void ∗ op_fopen (OpusFileCallbacks ∗_cb, const char ∗_path, const char
∗_mode) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2) OP_ARG_NONNULL(3)

Opens a stream with fopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_fdopen (OpusFileCallbacks ∗_cb, int _fd, const char ∗_mode)
OP_ARG_NONNULL(1) OP_ARG_NONNULL(3)

Opens a stream with fdopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_freopen (OpusFileCallbacks ∗_cb, const char ∗_path, const char
∗_mode, void ∗_stream) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2) OP_ARG_NONNULL(3) OP_AR-
G_NONNULL(4)

Opens a stream with freopen() and fills in a set of callbacks that can be used to access it.

• OP_WARN_UNUSED_RESULT void ∗ op_mem_stream_create (OpusFileCallbacks ∗_cb, const unsigned
char ∗_data, size_t _size) OP_ARG_NONNULL(1)

Creates a stream that reads from the given block of memory.

• OP_WARN_UNUSED_RESULT void ∗ op_url_stream_vcreate (OpusFileCallbacks ∗_cb, const char ∗_url,
va_list _ap) OP_ARG_NONNULL(1) OP_ARG_NONNULL(2)

Creates a stream that reads from the given URL.

• OP_WARN_UNUSED_RESULT void ∗ op_url_stream_create (OpusFileCallbacks ∗_cb, const char ∗_url,...)
OP_ARG_NONNULL(1) OP_ARG_NONNULL(2)

Creates a stream that reads from the given URL using the specified proxy.

4.4.1 Detailed Description

4.4.2 Typedef Documentation

4.4.2.1 typedef int(∗ op read func)(void ∗ stream, unsigned char ∗ ptr, int nbytes)

Reads up to _nbytes bytes of data from _stream.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

20 Module Documentation

Parameters
_stream The stream to read from.

out _ptr The buffer to store the data in.
_nbytes The maximum number of bytes to read. This function may return fewer, though

it will not return zero unless it reaches end-of-file.

Returns

The number of bytes successfully read, or a negative value on error.

4.4.2.2 typedef int(∗ op seek func)(void ∗ stream, opus int64 offset, int whence)

Sets the position indicator for _stream.

The new position, measured in bytes, is obtained by adding _offset bytes to the position specified by _whence.
If _whence is set to SEEK_SET, SEEK_CUR, or SEEK_END, the offset is relative to the start of the stream, the
current position indicator, or end-of-file, respectively.

Return values
0 Success.

-1 Seeking is not supported or an error occurred. errno need not be set.

4.4.2.3 typedef opus int64(∗ op tell func)(void ∗ stream)

Obtains the current value of the position indicator for _stream.

Returns

The current position indicator.

4.4.2.4 typedef int(∗ op close func)(void ∗ stream)

Closes the underlying stream.

Return values
0 Success.

EOF An error occurred. errno need not be set.

4.4.3 Function Documentation

4.4.3.1 OP WARN UNUSED RESULT void∗ op fopen (OpusFileCallbacks ∗ cb, const char ∗ path, const char ∗ mode)

Opens a stream with fopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.4 Abstract Stream Reading Interface 21

Parameters
out _cb The callbacks to use for this file. If there is an error opening the file, nothing will

be filled in here.
_path The path to the file to open. On Windows, this string must be UTF-8 (to allow

access to files whose names cannot be represented in the current MBCS code
page). All other systems use the native character encoding.

_mode The mode to open the file in.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.2 OP WARN UNUSED RESULT void∗ op fdopen (OpusFileCallbacks ∗ cb, int fd, const char ∗ mode)

Opens a stream with fdopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Parameters
out _cb The callbacks to use for this file. If there is an error opening the file, nothing will

be filled in here.
_fd The file descriptor to open.

_mode The mode to open the file in.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.3 OP WARN UNUSED RESULT void∗ op freopen (OpusFileCallbacks ∗ cb, const char ∗ path, const char ∗
mode, void ∗ stream)

Opens a stream with freopen() and fills in a set of callbacks that can be used to access it.

This is useful to avoid writing your own portable 64-bit seeking wrappers, and also avoids cross-module linking
issues on Windows, where a FILE ∗ must be accessed by routines defined in the same module that opened it.

Parameters
out _cb The callbacks to use for this file. If there is an error opening the file, nothing will

be filled in here.
_path The path to the file to open. On Windows, this string must be UTF-8 (to allow

access to files whose names cannot be represented in the current MBCS code
page). All other systems use the native character encoding.

_mode The mode to open the file in.
_stream A stream previously returned by op_fopen(), op_fdopen(), or op_freopen().

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

22 Module Documentation

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.4 OP WARN UNUSED RESULT void∗ op mem stream create (OpusFileCallbacks ∗ cb, const unsigned char ∗
data, size t size)

Creates a stream that reads from the given block of memory.

This block of memory must contain the complete stream to decode. This is useful for caching small streams (e.g.,
sound effects) in RAM.

Parameters
out _cb The callbacks to use for this stream. If there is an error creating the stream,

nothing will be filled in here.
_data The block of memory to read from.
_size The size of the block of memory.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.5 OP WARN UNUSED RESULT void∗ op url stream vcreate (OpusFileCallbacks ∗ cb, const char ∗ url, va list ap
)

Creates a stream that reads from the given URL.

This function behaves identically to op_url_stream_create(), except that it takes a va_list instead of a variable
number of arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of
_ap is undefined after the call.

Parameters
out _cb The callbacks to use for this stream. If there is an error creating the stream,

nothing will be filled in here.
_url The URL to read from. Currently only the <file:>, <http:>, and <https:>

schemes are supported. Both <http:> and <https:> may be disabled at com-
pile time, in which case opening such URLs will always fail.

in,out _ap A list of the optional flags to use. This is a variable-length list of options termi-
nated with NULL.

Returns

A stream handle to use with the callbacks, or NULL on error.

4.4.3.6 OP WARN UNUSED RESULT void∗ op url stream create (OpusFileCallbacks ∗ cb, const char ∗ url, ...)

Creates a stream that reads from the given URL using the specified proxy.

Parameters
out _cb The callbacks to use for this stream. If there is an error creating the stream,

nothing will be filled in here.
_url The URL to read from. Currently only the <file:>, <http:>, and <https:>

schemes are supported. Both <http:> and <https:> may be disabled at com-
pile time, in which case opening such URLs will always fail.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.4 Abstract Stream Reading Interface 23

... The optional flags to use. This is a variable-length list of options terminated
with NULL.

Returns

A stream handle to use with the callbacks, or NULL on error.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

24 Module Documentation

4.5 Opening and Closing

Functions for opening and closing streams

These functions allow you to test a stream to see if it is Opus, open it, and close it.

Several flavors are provided for each of the built-in stream types, plus a more general version which takes a set of
application-provided callbacks.

• int op_test (OpusHead ∗_head, const unsigned char ∗_initial_data, size_t _initial_bytes)

Test to see if this is an Opus stream.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_file (const char ∗_path, int ∗_error) OP_ARG_N-
ONNULL(1)

Open a stream from the given file path.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_memory (const unsigned char ∗_data, size_t _-
size, int ∗_error)

Open a stream from a memory buffer.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_vopen_url (const char ∗_url, int ∗_error, va_list _ap) O-
P_ARG_NONNULL(1)

Open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_url (const char ∗_url, int ∗_error,...) OP_ARG_N-
ONNULL(1)

Open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_open_callbacks (void ∗_source, const OpusFile-
Callbacks ∗_cb, const unsigned char ∗_initial_data, size_t _initial_bytes, int ∗_error) OP_ARG_NONNU-
LL(2)

Open a stream using the given set of callbacks to access it.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_file (const char ∗_path, int ∗_error) OP_ARG_NO-
NNULL(1)

Partially open a stream from the given file path.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_memory (const unsigned char ∗_data, size_t _size,
int ∗_error)

Partially open a stream from a memory buffer.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_vtest_url (const char ∗_url, int ∗_error, va_list _ap) OP-
_ARG_NONNULL(1)

Partially open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_url (const char ∗_url, int ∗_error,...) OP_ARG_NO-
NNULL(1)

Partially open a stream from a URL.

• OP_WARN_UNUSED_RESULT OggOpusFile ∗ op_test_callbacks (void ∗_source, const OpusFileCallbacks
∗_cb, const unsigned char ∗_initial_data, size_t _initial_bytes, int ∗_error) OP_ARG_NONNULL(2)

Partially open a stream using the given set of callbacks to access it.

• int op_test_open (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Finish opening a stream partially opened with op_test_callbacks() or one of the associated convenience functions.

• void op_free (OggOpusFile ∗_of)

Release all memory used by an OggOpusFile.

4.5.1 Detailed Description

4.5.2 Function Documentation

4.5.2.1 int op test (OpusHead ∗ head, const unsigned char ∗ initial data, size t initial bytes)

Test to see if this is an Opus stream.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.5 Opening and Closing 25

For good results, you will need at least 57 bytes (for a pure Opus-only stream). Something like 512 bytes will give
more reliable results for multiplexed streams. This function is meant to be a quick-rejection filter. Its purpose is not
to guarantee that a stream is a valid Opus stream, but to ensure that it looks enough like Opus that it isn’t going
to be recognized as some other format (except possibly an Opus stream that is also multiplexed with other codecs,
such as video).

Parameters
out _head The parsed ID header contents. You may pass NULL if you do not need this

information. If the function fails, the contents of this structure remain untouched.
_initial_data An initial buffer of data from the start of the stream.

_initial_bytes The number of bytes in _initial_data.

Returns

0 if the data appears to be Opus, or a negative value on error.

Return values
OP_FALSE There was not enough data to tell if this was an Opus stream or not.

OP_EFAULT An internal memory allocation failed.
OP_EIMPL The stream used a feature that is not implemented, such as an unsupported channel

family.
OP_ENOTFORMAT If the data did not contain a recognizable ID header for an Opus stream.

OP_EVERSION If the version field signaled a version this library does not know how to parse.
OP_EBADHEADER The ID header was not properly formatted or contained illegal values.

4.5.2.2 OP WARN UNUSED RESULT OggOpusFile∗ op open file (const char ∗ path, int ∗ error)

Open a stream from the given file path.

Parameters
_path The path to the file to open.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. The failure code will be OP_EFAULT if the
file could not be opened, or one of the other failure codes from op_open_-
callbacks() otherwise.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.3 OP WARN UNUSED RESULT OggOpusFile∗ op open memory (const unsigned char ∗ data, size t size, int ∗ error)

Open a stream from a memory buffer.

Parameters
_data The memory buffer to open.
_size The number of bytes in the buffer.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

26 Module Documentation

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.4 OP WARN UNUSED RESULT OggOpusFile∗ op vopen url (const char ∗ url, int ∗ error, va list ap)

Open a stream from a URL.

This function behaves identically to op_open_url(), except that it takes a va_list instead of a variable number of
arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of _ap is
undefined after the call.

Parameters
_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes

are supported. Both <http:> and <https:> may be disabled at compile time,
in which case opening such URLs will always fail.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

in,out _ap A list of the optional flags to use. This is a variable-length list of options termi-
nated with NULL.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.5 OP WARN UNUSED RESULT OggOpusFile∗ op open url (const char ∗ url, int ∗ error, ...)

Open a stream from a URL.

However, this approach will not work for live streams or HTTP/1.0 servers (which do not support Range requets).

Parameters
_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes

are supported. Both <http:> and <https:> may be disabled at compile time,
in which case opening such URLs will always fail.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

... The optional flags to use. This is a variable-length list of options terminated
with NULL.

Returns

A freshly opened OggOpusFile, or NULL on error.

4.5.2.6 OP WARN UNUSED RESULT OggOpusFile∗ op open callbacks (void ∗ source, const OpusFileCallbacks ∗ cb,
const unsigned char ∗ initial data, size t initial bytes, int ∗ error)

Open a stream using the given set of callbacks to access it.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.5 Opening and Closing 27

Parameters
_source The stream to read from (e.g., a FILE ∗).

_cb The callbacks with which to access the stream. read()must be implemented.
seek() and tell() may be NULL, or may always return -1 to indicate a
source is unseekable, but if seek() is implemented and succeeds on a par-
ticular source, then tell() must also. close() may be NULL, but if it is
not, it will be called when the OggOpusFile is destroyed by op_free(). It will
not be called if op_open_callbacks() fails with an error.

_initial_data An initial buffer of data from the start of the stream. Applications can read some
number of bytes from the start of the stream to help identify this as an Opus
stream, and then provide them here to allow the stream to be opened, even if it
is unseekable.

_initial_bytes The number of bytes in _initial_data. If the stream is seekable, its current po-
sition (as reported by tell() at the start of this function) must be equal to
_initial_bytes. Otherwise, seeking to absolute positions will generate inconsis-
tent results.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if you
don’t want the failure code. The failure code will be one of

OP_EREAD An underlying read, seek, or tell operation failed when it should
have succeeded, or we failed to find data in the stream we had seen
before.

OP_EFAULT There was a memory allocation failure, or an internal library er-
ror.

OP_EIMPL The stream used a feature that is not implemented, such as an
unsupported channel family.

OP_EINVAL seek() was implemented and succeeded on this source, but
tell() did not, or the starting position indicator was not equal to _initial-
_bytes.

OP_ENOTFORMAT The stream contained a link that did not have any logical
Opus streams in it.

OP_EBADHEADER A required header packet was not properly formatted,
contained illegal values, or was missing altogether.

OP_EVERSION An ID header contained an unrecognized version number.

OP_EBADLINK We failed to find data we had seen before after seeking.

OP_EBADTIMESTAMP The first or last timestamp in a link failed basic validity
checks.

Returns

A freshly opened OggOpusFile, or NULL on error. libopusfile does not take ownership of the source
if the call fails. The calling application is responsible for closing the source if this call returns an error.

4.5.2.7 OP WARN UNUSED RESULT OggOpusFile∗ op test file (const char ∗ path, int ∗ error)

Partially open a stream from the given file path.

See also

op_test_callbacks

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

28 Module Documentation

Parameters
_path The path to the file to open.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. The failure code will be OP_EFAULT if the
file could not be opened, or one of the other failure codes from op_open_-
callbacks() otherwise.

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.8 OP WARN UNUSED RESULT OggOpusFile∗ op test memory (const unsigned char ∗ data, size t size, int ∗ error)

Partially open a stream from a memory buffer.

See also

op_test_callbacks

Parameters
_data The memory buffer to open.
_size The number of bytes in the buffer.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.9 OP WARN UNUSED RESULT OggOpusFile∗ op vtest url (const char ∗ url, int ∗ error, va list ap)

Partially open a stream from a URL.

This function behaves identically to op_test_url(), except that it takes a va_list instead of a variable number of
arguments. It does not call the va_end macro, and because it invokes the va_arg macro, the value of _ap is
undefined after the call.

See also

op_test_url
op_test_callbacks

Parameters
_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes

are supported. Both <http:> and <https:> may be disabled at compile time,
in which case opening such URLs will always fail.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

in,out _ap A list of the optional flags to use. This is a variable-length list of options termi-
nated with NULL.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.5 Opening and Closing 29

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.10 OP WARN UNUSED RESULT OggOpusFile∗ op test url (const char ∗ url, int ∗ error, ...)

Partially open a stream from a URL.

See also

op_test_callbacks

Parameters
_url The URL to open. Currently only the <file:>, <http:>, and <https:> schemes

are supported. Both <http:> and <https:> may be disabled at compile time,
in which case opening such URLs will always fail.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

... The optional flags to use. This is a variable-length list of options terminated
with NULL.

Returns

A partially opened OggOpusFile, or NULL on error.

4.5.2.11 OP WARN UNUSED RESULT OggOpusFile∗ op test callbacks (void ∗ source, const OpusFileCallbacks ∗ cb,
const unsigned char ∗ initial data, size t initial bytes, int ∗ error)

Partially open a stream using the given set of callbacks to access it.

This tests for Opusness and loads the headers for the first link. It does not seek (although it tests for seekability).
You can query a partially open stream for the few pieces of basic information returned by op_serialno(), op_channel-
_count(), op_head(), and op_tags() (but only for the first link). You may also determine if it is seekable via a call to
op_seekable(). You cannot read audio from the stream, seek, get the size or duration, get information from links
other than the first one, or even get the total number of links until you finish opening the stream with op_test_open().
If you do not need to do any of these things, you can dispose of it with op_free() instead.

This function is provided mostly to simplify porting existing code that used libvorbisfile. For new code, you
are likely better off using op_test() instead, which is less resource-intensive, requires less data to succeed, and
imposes a hard limit on the amount of data it examines (important for unseekable sources, where all such data must
be buffered until you are sure of the stream type).

Parameters
_source The stream to read from (e.g., a FILE ∗).

_cb The callbacks with which to access the stream. read()must be implemented.
seek() and tell() may be NULL, or may always return -1 to indicate a
source is unseekable, but if seek() is implemented and succeeds on a par-
ticular source, then tell() must also. close() may be NULL, but if it is
not, it will be called when the OggOpusFile is destroyed by op_free(). It will
not be called if op_open_callbacks() fails with an error.

_initial_data An initial buffer of data from the start of the stream. Applications can read
some number of bytes from the start of the stream to help identify this as an
Opus stream, and then provide them here to allow the stream to be tested more
thoroughly, even if it is unseekable.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

30 Module Documentation

_initial_bytes The number of bytes in _initial_data. If the stream is seekable, its current po-
sition (as reported by tell() at the start of this function) must be equal to
_initial_bytes. Otherwise, seeking to absolute positions will generate inconsis-
tent results.

out _error Returns 0 on success, or a failure code on error. You may pass in NULL if
you don’t want the failure code. See op_open_callbacks() for a full list of failure
codes.

Returns

A partially opened OggOpusFile, or NULL on error. libopusfile does not take ownership of the source
if the call fails. The calling application is responsible for closing the source if this call returns an error.

4.5.2.12 int op test open (OggOpusFile ∗ of)

Finish opening a stream partially opened with op_test_callbacks() or one of the associated convenience functions.

If this function fails, you are still responsible for freeing the OggOpusFile with op_free().

Parameters
_of The OggOpusFile to finish opening.

Returns

0 on success, or a negative value on error.

Return values
OP_EREAD An underlying read, seek, or tell operation failed when it should have succeeded.

OP_EFAULT There was a memory allocation failure, or an internal library error.
OP_EIMPL The stream used a feature that is not implemented, such as an unsupported channel

family.
OP_EINVAL The stream was not partially opened with op_test_callbacks() or one of the associated

convenience functions.
OP_ENOTFORMAT The stream contained a link that did not have any logical Opus streams in it.
OP_EBADHEADER A required header packet was not properly formatted, contained illegal values, or was

missing altogether.
OP_EVERSION An ID header contained an unrecognized version number.
OP_EBADLINK We failed to find data we had seen before after seeking.

OP_EBADTIMESTAMP The first or last timestamp in a link failed basic validity checks.

4.5.2.13 void op free (OggOpusFile ∗ of)

Release all memory used by an OggOpusFile.

Parameters
_of The OggOpusFile to free.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.6 Stream Information 31

4.6 Stream Information

Functions for obtaining information about streams

These functions allow you to get basic information about a stream, including seekability, the number of links (for
chained streams), plus the size, duration, bitrate, header parameters, and meta information for each link (or, where
available, the stream as a whole).

Some of these (size, duration) are only available for seekable streams. You can also query the current stream
position, link, and playback time, and instantaneous bitrate during playback.

Some of these functions may be used successfully on the partially open streams returned by op_test_callbacks() or
one of the associated convenience functions. Their documention will indicate so explicitly.

• int op_seekable (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Returns whether or not the data source being read is seekable.

• int op_link_count (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Returns the number of links in this chained stream.

• opus_uint32 op_serialno (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the serial number of the given link in a (possibly-chained) Ogg Opus stream.

• int op_channel_count (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the channel count of the given link in a (possibly-chained) Ogg Opus stream.

• opus_int64 op_raw_total (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the total (compressed) size of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream,
including all headers and Ogg muxing overhead.

• ogg_int64_t op_pcm_total (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the total PCM length (number of samples at 48 kHz) of the stream, or of an individual link in a (possibly-chained)
Ogg Opus stream.

• const OpusHead ∗ op_head (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the ID header information for the given link in a (possibly chained) Ogg Opus stream.

• const OpusTags ∗ op_tags (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Get the comment header information for the given link in a (possibly chained) Ogg Opus stream.

• int op_current_link (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Retrieve the index of the current link.

• opus_int32 op_bitrate (OggOpusFile ∗_of, int _li) OP_ARG_NONNULL(1)

Computes the bitrate for a given link in a (possibly chained) Ogg Opus stream.

• opus_int32 op_bitrate_instant (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Compute the instantaneous bitrate, measured as the ratio of bits to playable samples decoded since a) the last call
to op_bitrate_instant(), b) the last seek, or c) the start of playback, whichever was most recent.

• opus_int64 op_raw_tell (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Obtain the current value of the position indicator for _of.

• ogg_int64_t op_pcm_tell (OggOpusFile ∗_of) OP_ARG_NONNULL(1)

Obtain the PCM offset of the next sample to be read.

4.6.1 Detailed Description

4.6.2 Function Documentation

4.6.2.1 int op seekable (OggOpusFile ∗ of)

Returns whether or not the data source being read is seekable.

This is true if

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

32 Module Documentation

1. The seek() and tell() callbacks are both non-NULL,

2. The seek() callback was successfully executed at least once, and

3. The tell() callback was successfully able to report the position indicator afterwards.

This function may be called on partially-opened streams.

Parameters
_of The OggOpusFile whose seekable status is to be returned.

Returns

A non-zero value if seekable, and 0 if unseekable.

4.6.2.2 int op link count (OggOpusFile ∗ of)

Returns the number of links in this chained stream.

This function may be called on partially-opened streams, but it will always return 1. The actual number of links is
not known until the stream is fully opened.

Parameters
_of The OggOpusFile from which to retrieve the link count.

Returns

For fully-open seekable sources, this returns the total number of links in the whole stream. For partially-open
or unseekable sources, this always returns 1.

4.6.2.3 opus uint32 op serialno (OggOpusFile ∗ of, int li)

Get the serial number of the given link in a (possibly-chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the serial number of the Opus
stream in the first link.

Parameters
_of The OggOpusFile from which to retrieve the serial number.
_li The index of the link whose serial number should be retrieved. Use a negative number to get

the serial number of the current link.

Returns

The serial number of the given link. If _li is greater than the total number of links, this returns the serial number
of the last link. If the source is not seekable, this always returns the serial number of the current link.

4.6.2.4 int op channel count (OggOpusFile ∗ of, int li)

Get the channel count of the given link in a (possibly-chained) Ogg Opus stream.

This is equivalent to op_head(_of,_li)->channel_count, but is provided for convenience. This function
may be called on partially-opened streams, but it will always return the channel count of the Opus stream in the first
link.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.6 Stream Information 33

Parameters
_of The OggOpusFile from which to retrieve the channel count.
_li The index of the link whose channel count should be retrieved. Use a negative number to get

the channel count of the current link.

Returns

The channel count of the given link. If _li is greater than the total number of links, this returns the channel count
of the last link. If the source is not seekable, this always returns the channel count of the current link.

4.6.2.5 opus int64 op raw total (OggOpusFile ∗ of, int li)

Get the total (compressed) size of the stream, or of an individual link in a (possibly-chained) Ogg Opus stream,
including all headers and Ogg muxing overhead.

Parameters
_of The OggOpusFile from which to retrieve the compressed size.
_li The index of the link whose compressed size should be computed. Use a negative number to

get the compressed size of the entire stream.

Returns

The compressed size of the entire stream if _li is negative, the compressed size of link _li if it is non-negative, or
a negative value on error. The compressed size of the entire stream may be smaller than that of the underlying
source if trailing garbage was detected in the file.

Return values
OP_EINVAL The source is not seekable (so we can’t know the length), _li wasn’t less than the total

number of links in the stream, or the stream was only partially open.

4.6.2.6 ogg int64 t op pcm total (OggOpusFile ∗ of, int li)

Get the total PCM length (number of samples at 48 kHz) of the stream, or of an individual link in a (possibly-chained)
Ogg Opus stream.

Users looking for op_time_total() should use op_pcm_total() instead. Because timestamps in Opus are fixed
at 48 kHz, there is no need for a separate function to convert this to seconds (and leaving it out avoids introducing
floating point to the API, for those that wish to avoid it).

Parameters
_of The OggOpusFile from which to retrieve the PCM offset.
_li The index of the link whose PCM length should be computed. Use a negative number to get

the PCM length of the entire stream.

Returns

The PCM length of the entire stream if _li is negative, the PCM length of link _li if it is non-negative, or a negative
value on error.

Return values
OP_EINVAL The source is not seekable (so we can’t know the length), _li wasn’t less than the total

number of links in the stream, or the stream was only partially open.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

34 Module Documentation

4.6.2.7 const OpusHead∗ op head (OggOpusFile ∗ of, int li)

Get the ID header information for the given link in a (possibly chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the ID header information of the
Opus stream in the first link.

Parameters
_of The OggOpusFile from which to retrieve the ID header information.
_li The index of the link whose ID header information should be retrieved. Use a negative number

to get the ID header information of the current link. For an unseekable stream, _li is ignored,
and the ID header information for the current link is always returned, if available.

Returns

The contents of the ID header for the given link.

4.6.2.8 const OpusTags∗ op tags (OggOpusFile ∗ of, int li)

Get the comment header information for the given link in a (possibly chained) Ogg Opus stream.

This function may be called on partially-opened streams, but it will always return the tags from the Opus stream in
the first link.

Parameters
_of The OggOpusFile from which to retrieve the comment header information.
_li The index of the link whose comment header information should be retrieved. Use a negative

number to get the comment header information of the current link. For an unseekable stream,
_li is ignored, and the comment header information for the current link is always returned, if
available.

Returns

The contents of the comment header for the given link, or NULL if this is an unseekable stream that encountered
an invalid link.

4.6.2.9 int op current link (OggOpusFile ∗ of)

Retrieve the index of the current link.

This is the link that produced the data most recently read by op_read_float() or its associated functions, or, after a
seek, the link that the seek target landed in. Reading more data may advance the link index (even on the first read
after a seek).

Parameters
_of The OggOpusFile from which to retrieve the current link index.

Returns

The index of the current link on success, or a negative value on failure. For seekable streams, this is a number
between 0 and the value returned by op_link_count(). For unseekable streams, this value starts at 0 and
increments by one each time a new link is encountered (even though op_link_count() always returns 1).

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.6 Stream Information 35

Return values
OP_EINVAL The stream was only partially open.

4.6.2.10 opus int32 op bitrate (OggOpusFile ∗ of, int li)

Computes the bitrate for a given link in a (possibly chained) Ogg Opus stream.

The stream must be seekable to compute the bitrate. For unseekable streams, use op_bitrate_instant() to get
periodic estimates.

Parameters
_of The OggOpusFile from which to retrieve the bitrate.
_li The index of the link whose bitrate should be computed. USe a negative number to get the

bitrate of the whole stream.

Returns

The bitrate on success, or a negative value on error.

Return values
OP_EINVAL The stream was only partially open, the stream was not seekable, or _li was larger than

the number of links.

4.6.2.11 opus int32 op bitrate instant (OggOpusFile ∗ of)

Compute the instantaneous bitrate, measured as the ratio of bits to playable samples decoded since a) the last call
to op_bitrate_instant(), b) the last seek, or c) the start of playback, whichever was most recent.

This will spike somewhat after a seek or at the start/end of a chain boundary, as pre-skip, pre-roll, and end-trimming
causes samples to be decoded but not played.

Parameters
_of The OggOpusFile from which to retrieve the bitrate.

Returns

The bitrate, in bits per second, or a negative value on error.

Return values
OP_FALSE No data has been decoded since any of the events described above.

OP_EINVAL The stream was only partially open.

4.6.2.12 opus int64 op raw tell (OggOpusFile ∗ of)

Obtain the current value of the position indicator for _of.

Parameters
_of The OggOpusFile from which to retrieve the position indicator.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

36 Module Documentation

Returns

The byte position that is currently being read from.

Return values
OP_EINVAL The stream was only partially open.

4.6.2.13 ogg int64 t op pcm tell (OggOpusFile ∗ of)

Obtain the PCM offset of the next sample to be read.

If the stream is not properly timestamped, this might not increment by the proper amount between reads, or even
return monotonically increasing values.

Parameters
_of The OggOpusFile from which to retrieve the PCM offset.

Returns

The PCM offset of the next sample to be read.

Return values
OP_EINVAL The stream was only partially open.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.7 Seeking 37

4.7 Seeking

Functions for seeking in Opus streams

These functions let you seek in Opus streams, if the underlying source support it.

Seeking is implemented for all built-in stream I/O routines, though some individual sources may not be seekable
(pipes, live HTTP streams, or HTTP streams from a server that does not support Range requests).

op_raw_seek() is the fastest: it is guaranteed to perform at most one physical seek, but, since the target is a byte
position, makes no guarantee how close to a given time it will come. op_pcm_seek() provides sample-accurate
seeking. The number of physical seeks it requires is still quite small (often 1 or 2, even in highly variable bitrate
streams).

Seeking in Opus requires decoding some pre-roll amount before playback to allow the internal state to converge
(as if recovering from packet loss). This is handled internally by libopusfile, but means there is little extra
overhead for decoding up to the exact position requested (since it must decode some amount of audio anyway). It
also means that decoding after seeking may not return exactly the same values as would be obtained by decoding
the stream straight through. However, such differences are expected to be smaller than the loss introduced by
Opus’s lossy compression.

• int op_raw_seek (OggOpusFile ∗_of, opus_int64 _byte_offset) OP_ARG_NONNULL(1)

Seek to a byte offset relative to the compressed data.

• int op_pcm_seek (OggOpusFile ∗_of, ogg_int64_t _pcm_offset) OP_ARG_NONNULL(1)

Seek to the specified PCM offset, such that decoding will begin at exactly the requested position.

4.7.1 Detailed Description

4.7.2 Function Documentation

4.7.2.1 int op raw seek (OggOpusFile ∗ of, opus int64 byte offset)

Seek to a byte offset relative to the compressed data.

This also scans packets to update the PCM cursor. It will cross a logical bitstream boundary, but only if it can’t get
any packets out of the tail of the link to which it seeks.

Parameters
_of The OggOpusFile in which to seek.

_byte_offset The byte position to seek to.

Returns

0 on success, or a negative error code on failure.

Return values
OP_EREAD The underlying seek operation failed.
OP_EINVAL The stream was only partially open, or the target was outside the valid range for the

stream.
OP_ENOSEEK This stream is not seekable.
OP_EBADLINK Failed to initialize a decoder for a stream for an unknown reason.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

38 Module Documentation

4.7.2.2 int op pcm seek (OggOpusFile ∗ of, ogg int64 t pcm offset)

Seek to the specified PCM offset, such that decoding will begin at exactly the requested position.

Parameters
_of The OggOpusFile in which to seek.

_pcm_offset The PCM offset to seek to. This is in samples at 48 kHz relative to the start of the stream.

Returns

0 on success, or a negative value on error.

Return values
OP_EREAD An underlying read or seek operation failed.
OP_EINVAL The stream was only partially open, or the target was outside the valid range for the

stream.
OP_ENOSEEK This stream is not seekable.
OP_EBADLINK We failed to find data we had seen before, or the bitstream structure was sufficiently

malformed that seeking to the target destination was impossible.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.8 Decoding 39

4.8 Decoding

Functions for decoding audio data

These functions retrieve actual decoded audio data from the stream.

The general functions, op_read() and op_read_float() return 16-bit or floating-point output, both using native endian
ordering. The number of channels returned can change from link to link in a chained stream. There are special
functions, op_read_stereo() and op_read_float_stereo(), which always output two channels, to simplify applications
which do not wish to handle multichannel audio. These downmix multichannel files to two channels, so they can
always return samples in the same format for every link in a chained file.

If the rest of your audio processing chain can handle floating point, those routines should be preferred, as floating
point output avoids introducing clipping and other issues which might be avoided entirely if, e.g., you scale down
the volume at some other stage. However, if you intend to direct consume 16-bit samples, the conversion in
libopusfile provides noise-shaping dithering and, if compiled against libopus 1.1 or later, soft-clipping
prevention.

libopusfile can also be configured at compile time to use the fixed-point libopus API. If so,
libopusfile’s floating-point API may also be disabled. In that configuration, nothing in libopusfile
will use any floating-point operations, to simplify support on devices without an adequate FPU.

Warning

HTTPS streams may be be vulnerable to truncation attacks if you do not check the error return code from op_-
read_float() or its associated functions. If the remote peer does not close the connection gracefully (with a TLS
"close notify" message), these functions will return OP_EREAD instead of 0 when they reach the end of the
file. If you are reading from an <https:> URL (particularly if seeking is not supported), you should make sure
to check for this error and warn the user appropriately.

• int op_set_gain_offset (OggOpusFile ∗_of, int _gain_type, opus_int32 _gain_offset_q8)

Sets the gain to be used for decoded output.

• OP_WARN_UNUSED_RESULT int op_read (OggOpusFile ∗_of, opus_int16 ∗_pcm, int _buf_size, int ∗_li)
OP_ARG_NONNULL(1)

Reads more samples from the stream.

• OP_WARN_UNUSED_RESULT int op_read_float (OggOpusFile ∗_of, float ∗_pcm, int _buf_size, int ∗_li)
OP_ARG_NONNULL(1)

Reads more samples from the stream.

• OP_WARN_UNUSED_RESULT int op_read_stereo (OggOpusFile ∗_of, opus_int16 ∗_pcm, int _buf_size)
OP_ARG_NONNULL(1)

Reads more samples from the stream and downmixes to stereo, if necessary.

• OP_WARN_UNUSED_RESULT int op_read_float_stereo (OggOpusFile ∗_of, float ∗_pcm, int _buf_size) O-
P_ARG_NONNULL(1)

Reads more samples from the stream and downmixes to stereo, if necessary.

• #define OP_HEADER_GAIN (0)

Gain offset type that indicates that the provided offset is relative to the header gain.

• #define OP_TRACK_GAIN (3008)

Gain offset type that indicates that the provided offset is relative to the R128_TRACK_GAIN value (if any), in addition
to the header gain.

• #define OP_ABSOLUTE_GAIN (3009)

Gain offset type that indicates that the provided offset should be used as the gain directly, without applying any the
header or track gains.

4.8.1 Detailed Description

4.8.2 Macro Definition Documentation

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

40 Module Documentation

4.8.2.1 #define OP HEADER GAIN (0)

Gain offset type that indicates that the provided offset is relative to the header gain.

This is the default.

4.8.2.2 #define OP TRACK GAIN (3008)

Gain offset type that indicates that the provided offset is relative to the R128_TRACK_GAIN value (if any), in addition
to the header gain.

4.8.2.3 #define OP ABSOLUTE GAIN (3009)

Gain offset type that indicates that the provided offset should be used as the gain directly, without applying any the
header or track gains.

4.8.3 Function Documentation

4.8.3.1 int op set gain offset (OggOpusFile ∗ of, int gain type, opus int32 gain offset q8)

Sets the gain to be used for decoded output.

By default, the gain in the header is applied with no additional offset. The total gain (including header gain and/or
track gain, if applicable, and this offset), will be clamped to [-32768,32767]/256 dB. This is more than enough to
saturate or underflow 16-bit PCM.

Note

The new gain will not be applied to any already buffered, decoded output. This means you cannot change it
sample-by-sample, as at best it will be updated packet-by-packet. It is meant for setting a target volume level,
rather than applying smooth fades, etc.

Parameters
_of The OggOpusFile on which to set the gain offset.

_gain_type One of OP_HEADER_GAIN, OP_TRACK_GAIN, or OP_ABSOLUTE_GAIN.
_gain_offset_q8 The gain offset to apply, in 1/256ths of a dB.

Returns

0 on success or a negative value on error.

Return values
OP_EINVAL The _gain_type was unrecognized.

4.8.3.2 OP WARN UNUSED RESULT int op read (OggOpusFile ∗ of, opus int16 ∗ pcm, int buf size, int ∗ li)

Reads more samples from the stream.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.8 Decoding 41

Note

Although _buf_size must indicate the total number of values that can be stored in _pcm, the return value is the
number of samples per channel. This is done because

1. The channel count cannot be known a priori (reading more samples might advance us into the next link,
with a different channel count), so _buf_size cannot also be in units of samples per channel,

2. Returning the samples per channel matches the libopus API as closely as we’re able,

3. Returning the total number of values instead of samples per channel would mean the caller would need
a division to compute the samples per channel, and might worry about the possibility of getting back
samples for some channels and not others, and

4. This approach is relatively fool-proof: if an application passes too small a value to _buf_size, they will
simply get fewer samples back, and if they assume the return value is the total number of values, then
they will simply read too few (rather than reading too many and going off the end of the buffer).

Parameters
_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed native-endian
16-bit values at 48 kHz with a nominal range of [-32768,32767). Multiple
channels are interleaved using the Vorbis channel ordering. This
must have room for at least _buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that this
be large enough for at least 120 ms of data at 48 kHz per channel (5760 values
per channel). Smaller buffers will simply return less data, possibly consuming
more memory to buffer the data internally. libopusfile may return less
data than requested. If so, there is no guarantee that the remaining data in
_pcm will be unmodified.

out _li The index of the link this data was decoded from. You may pass NULL if you
do not need this information. If this function fails (returning a negative value),
this parameter is left unset.

Returns

The number of samples read per channel on success, or a negative value on failure. The channel count can
be retrieved on success by calling op_head(_of,∗_li). The number of samples returned may be 0 if
the buffer was too small to store even a single sample for all channels, or if end-of-file was reached. The
list of possible failure codes follows. Most of them can only be returned by unseekable, chained streams that
encounter a new link.

Return values
OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this

function again to continue decoding past the hole.
OP_EREAD An underlying read operation failed. This may signal a truncation attack from an <https:>

source.
OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not imple-
mented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.
OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus streams

in it.
OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that was

not properly formatted, contained illegal values, or was missing altogether.
OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an un-

recognized version number.
OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-800004.3.9

42 Module Documentation

OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed basic
validity checks.

4.8.3.3 OP WARN UNUSED RESULT int op read float (OggOpusFile ∗ of, float ∗ pcm, int buf size, int ∗ li)

Reads more samples from the stream.

Note

Although _buf_size must indicate the total number of values that can be stored in _pcm, the return value is the
number of samples per channel.

1. The channel count cannot be known a priori (reading more samples might advance us into the next link,
with a different channel count), so _buf_size cannot also be in units of samples per channel,

2. Returning the samples per channel matches the libopus API as closely as we’re able,

3. Returning the total number of values instead of samples per channel would mean the caller would need
a division to compute the samples per channel, and might worry about the possibility of getting back
samples for some channels and not others, and

4. This approach is relatively fool-proof: if an application passes too small a value to _buf_size, they will
simply get fewer samples back, and if they assume the return value is the total number of values, then
they will simply read too few (rather than reading too many and going off the end of the buffer).

Parameters
_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples as signed floats at 48 k-
Hz with a nominal range of [-1.0,1.0]. Multiple channels are interleaved
using the Vorbis channel ordering. This must have room for at least
_buf_size floats.

_buf_size The number of floats that can be stored in _pcm. It is recommended that this be
large enough for at least 120 ms of data at 48 kHz per channel (5760 samples
per channel). Smaller buffers will simply return less data, possibly consuming
more memory to buffer the data internally. If less than _buf_size values are
returned, libopusfile makes no guarantee that the remaining data in _-
pcm will be unmodified.

out _li The index of the link this data was decoded from. You may pass NULL if you
do not need this information. If this function fails (returning a negative value),
this parameter is left unset.

Returns

The number of samples read per channel on success, or a negative value on failure. The channel count can
be retrieved on success by calling op_head(_of,∗_li). The number of samples returned may be 0 if
the buffer was too small to store even a single sample for all channels, or if end-of-file was reached. The
list of possible failure codes follows. Most of them can only be returned by unseekable, chained streams that
encounter a new link.

Return values
OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this

function again to continue decoding past the hole.
OP_EREAD An underlying read operation failed. This may signal a truncation attack from an <https:>

source.
OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not imple-
mented, such as an unsupported channel family.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-800004.3.9

4.8 Decoding 43

OP_EINVAL The stream was only partially open.
OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus streams

in it.
OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that was

not properly formatted, contained illegal values, or was missing altogether.
OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an un-

recognized version number.
OP_EBADPACKET Failed to properly decode the next packet.

OP_EBADLINK We failed to find data we had seen before.
OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed basic

validity checks.

4.8.3.4 OP WARN UNUSED RESULT int op read stereo (OggOpusFile ∗ of, opus int16 ∗ pcm, int buf size)

Reads more samples from the stream and downmixes to stereo, if necessary.

This function is intended for simple players that want a uniform output format, even if the channel count changes
between links in a chained stream.

Note

_buf_size indicates the total number of values that can be stored in _pcm, while the return value is the number
of samples per channel, even though the channel count is known, for consistency with op_read().

Parameters
_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed native-endian 16-
bit values at 48 kHz with a nominal range of [-32768,32767). The left and
right channels are interleaved in the buffer. This must have room for at least
_buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that
this be large enough for at least 120 ms of data at 48 kHz per channel (11520
values total). Smaller buffers will simply return less data, possibly consuming
more memory to buffer the data internally. If less than _buf_size values are
returned, libopusfile makes no guarantee that the remaining data in _-
pcm will be unmodified.

Returns

The number of samples read per channel on success, or a negative value on failure. The number of samples
returned may be 0 if the buffer was too small to store even a single sample for both channels, or if end-of-file
was reached. The list of possible failure codes follows. Most of them can only be returned by unseekable,
chained streams that encounter a new link.

Return values
OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this

function again to continue decoding past the hole.
OP_EREAD An underlying read operation failed. This may signal a truncation attack from an <https:>

source.
OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not imple-
mented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

44 Module Documentation

OP_ENOTFORMAT An unseekable stream encountered a new link that did not have any logical Opus streams
in it.

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that was
not properly formatted, contained illegal values, or was missing altogether.

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an un-
recognized version number.

OP_EBADPACKET Failed to properly decode the next packet.
OP_EBADLINK We failed to find data we had seen before.

OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed basic
validity checks.

4.8.3.5 OP WARN UNUSED RESULT int op read float stereo (OggOpusFile ∗ of, float ∗ pcm, int buf size)

Reads more samples from the stream and downmixes to stereo, if necessary.

This function is intended for simple players that want a uniform output format, even if the channel count changes
between links in a chained stream.

Note

_buf_size indicates the total number of values that can be stored in _pcm, while the return value is the number
of samples per channel, even though the channel count is known, for consistency with op_read_float().

Parameters
_of The OggOpusFile from which to read.

out _pcm A buffer in which to store the output PCM samples, as signed floats at 48 k-
Hz with a nominal range of [-1.0,1.0]. The left and right channels are
interleaved in the buffer. This must have room for at least _buf_size values.

_buf_size The number of values that can be stored in _pcm. It is recommended that
this be large enough for at least 120 ms of data at 48 kHz per channel (11520
values total). Smaller buffers will simply return less data, possibly consuming
more memory to buffer the data internally. If less than _buf_size values are
returned, libopusfile makes no guarantee that the remaining data in _-
pcm will be unmodified.

Returns

The number of samples read per channel on success, or a negative value on failure. The number of samples
returned may be 0 if the buffer was too small to store even a single sample for both channels, or if end-of-file
was reached. The list of possible failure codes follows. Most of them can only be returned by unseekable,
chained streams that encounter a new link.

Return values
OP_HOLE There was a hole in the data, and some samples may have been skipped. Call this

function again to continue decoding past the hole.
OP_EREAD An underlying read operation failed. This may signal a truncation attack from an <https:>

source.
OP_EFAULT An internal memory allocation failed.

OP_EIMPL An unseekable stream encountered a new link that used a feature that is not imple-
mented, such as an unsupported channel family.

OP_EINVAL The stream was only partially open.
OP_ENOTFORMAT An unseekable stream encountered a new link that that did not have any logical Opus

streams in it.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

4.8 Decoding 45

OP_EBADHEADER An unseekable stream encountered a new link with a required header packet that was
not properly formatted, contained illegal values, or was missing altogether.

OP_EVERSION An unseekable stream encountered a new link with an ID header that contained an un-
recognized version number.

OP_EBADPACKET Failed to properly decode the next packet.
OP_EBADLINK We failed to find data we had seen before.

OP_EBADTIMESTAMP An unseekable stream encountered a new link with a starting timestamp that failed basic
validity checks.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

46 Module Documentation

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

Chapter 5

Data Structure Documentation

5.1 OpusFileCallbacks Struct Reference

The callbacks used to access non-FILE stream resources.

#include <opusfile.h>

Data Fields

• op_read_func read

Used to read data from the stream.

• op_seek_func seek

Used to seek in the stream.

• op_tell_func tell

Used to return the current read position in the stream.

• op_close_func close

Used to close the stream when the decoder is freed.

5.1.1 Detailed Description

The callbacks used to access non-FILE stream resources.

The function prototypes are basically the same as for the stdio functions fread(), fseek(), ftell(), and
fclose(). The differences are that the FILE ∗ arguments have been replaced with a void ∗, which is to be
used as a pointer to whatever internal data these functions might need, that seek and tell take and return 64-bit
offsets, and that seek must return -1 if the stream is unseekable.

5.1.2 Field Documentation

5.1.2.1 op_read_func OpusFileCallbacks::read

Used to read data from the stream.

This must not be NULL.

5.1.2.2 op_seek_func OpusFileCallbacks::seek

Used to seek in the stream.

This may be NULL if seeking is not implemented.

48 Data Structure Documentation

5.1.2.3 op_tell_func OpusFileCallbacks::tell

Used to return the current read position in the stream.

This may be NULL if seeking is not implemented.

5.1.2.4 op_close_func OpusFileCallbacks::close

Used to close the stream when the decoder is freed.

This may be NULL to leave the stream open.

The documentation for this struct was generated from the following file:

• /home/giles/projects/opusfile-0.4/include/opusfile.h

5.2 OpusHead Struct Reference

Ogg Opus bitstream information.

#include <opusfile.h>

Data Fields

• int version

The Ogg Opus format version, in the range 0...255.

• int channel_count

The number of channels, in the range 1...255.

• unsigned pre_skip

The number of samples that should be discarded from the beginning of the stream.

• opus_uint32 input_sample_rate

The sampling rate of the original input.

• int output_gain

The gain to apply to the decoded output, in dB, as a Q8 value in the range -32768...32767.

• int mapping_family

The channel mapping family, in the range 0...255.

• int stream_count

The number of Opus streams in each Ogg packet, in the range 1...255.

• int coupled_count

The number of coupled Opus streams in each Ogg packet, in the range 0...127.

• unsigned char mapping [OPUS_CHANNEL_COUNT_MAX]

The mapping from coded stream channels to output channels.

5.2.1 Detailed Description

Ogg Opus bitstream information.

This contains the basic playback parameters for a stream, and corresponds to the initial ID header packet of an Ogg
Opus stream.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

5.2 OpusHead Struct Reference 49

5.2.2 Field Documentation

5.2.2.1 int OpusHead::version

The Ogg Opus format version, in the range 0...255.

The top 4 bits represent a "major" version, and the bottom four bits represent backwards-compatible "minor" revi-
sions. The current specification describes version 1. This library will recognize versions up through 15 as backwards
compatible with the current specification. An earlier draft of the specification described a version 0, but the only dif-
ference between version 1 and version 0 is that version 0 did not specify the semantics for handling the version
field.

5.2.2.2 int OpusHead::channel count

The number of channels, in the range 1...255.

5.2.2.3 unsigned OpusHead::pre skip

The number of samples that should be discarded from the beginning of the stream.

5.2.2.4 opus uint32 OpusHead::input sample rate

The sampling rate of the original input.

All Opus audio is coded at 48 kHz, and should also be decoded at 48 kHz for playback (unless the target hardware
does not support this sampling rate). However, this field may be used to resample the audio back to the original
sampling rate, for example, when saving the output to a file.

5.2.2.5 int OpusHead::output gain

The gain to apply to the decoded output, in dB, as a Q8 value in the range -32768...32767.

The libopusfile API will automatically apply this gain to the decoded output before returning it, scaling it by
pow(10,output_gain/(20.0∗256)).

5.2.2.6 int OpusHead::mapping family

The channel mapping family, in the range 0...255.

Channel mapping family 0 covers mono or stereo in a single stream. Channel mapping family 1 covers 1 to 8
channels in one or more streams, using the Vorbis speaker assignments. Channel mapping family 255 covers 1 to
255 channels in one or more streams, but without any defined speaker assignment.

5.2.2.7 int OpusHead::stream count

The number of Opus streams in each Ogg packet, in the range 1...255.

5.2.2.8 int OpusHead::coupled count

The number of coupled Opus streams in each Ogg packet, in the range 0...127.

This must satisfy 0 <= coupled_count <= stream_count and coupled_count + stream_-
count <= 255. The coupled streams appear first, before all uncoupled streams, in an Ogg Opus packet.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

50 Data Structure Documentation

5.2.2.9 unsigned char OpusHead::mapping[OPUS_CHANNEL_COUNT_MAX]

The mapping from coded stream channels to output channels.

Let index=mapping[k] be the value for channel k. If index<2∗coupled_count, then it refers to the left
channel from stream (index/2) if even, and the right channel from stream (index/2) if odd. Otherwise, it
refers to the output of the uncoupled stream (index-coupled_count).

The documentation for this struct was generated from the following file:

• /home/giles/projects/opusfile-0.4/include/opusfile.h

5.3 OpusPictureTag Struct Reference

The contents of a METADATA_BLOCK_PICTURE tag.

#include <opusfile.h>

Data Fields

• opus_int32 type

The picture type according to the ID3v2 APIC frame:

• char ∗ mime_type

The MIME type of the picture, in printable ASCII characters 0x20-0x7E.

• char ∗ description

The description of the picture, in UTF-8.

• opus_uint32 width

The width of the picture in pixels.

• opus_uint32 height

The height of the picture in pixels.

• opus_uint32 depth

The color depth of the picture in bits-per-pixel (not bits-per-channel).

• opus_uint32 colors

For indexed-color pictures (e.g., GIF), the number of colors used, or 0 for non-indexed pictures.

• opus_uint32 data_length

The length of the picture data in bytes.

• unsigned char ∗ data

The binary picture data.

• int format

The format of the picture data, if known.

5.3.1 Detailed Description

The contents of a METADATA_BLOCK_PICTURE tag.

5.3.2 Field Documentation

5.3.2.1 opus int32 OpusPictureTag::type

The picture type according to the ID3v2 APIC frame:

1. Other

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

5.3 OpusPictureTag Struct Reference 51

2. 32x32 pixels ’file icon’ (PNG only)

3. Other file icon

4. Cover (front)

5. Cover (back)

6. Leaflet page

7. Media (e.g. label side of CD)

8. Lead artist/lead performer/soloist

9. Artist/performer

10. Conductor

11. Band/Orchestra

12. Composer

13. Lyricist/text writer

14. Recording Location

15. During recording

16. During performance

17. Movie/video screen capture

18. A bright colored fish

19. Illustration

20. Band/artist logotype

21. Publisher/Studio logotype

Others are reserved and should not be used. There may only be one each of picture type 1 and 2 in a file.

5.3.2.2 char∗ OpusPictureTag::mime type

The MIME type of the picture, in printable ASCII characters 0x20-0x7E.

The MIME type may also be "-->" to signify that the data part is a URL pointing to the picture instead of the
picture data itself. In this case, a terminating NUL is appended to the URL string in data, but data_length is set to
the length of the string excluding that terminating NUL.

5.3.2.3 char∗ OpusPictureTag::description

The description of the picture, in UTF-8.

5.3.2.4 opus uint32 OpusPictureTag::width

The width of the picture in pixels.

5.3.2.5 opus uint32 OpusPictureTag::height

The height of the picture in pixels.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

52 Data Structure Documentation

5.3.2.6 opus uint32 OpusPictureTag::depth

The color depth of the picture in bits-per-pixel (not bits-per-channel).

5.3.2.7 opus uint32 OpusPictureTag::colors

For indexed-color pictures (e.g., GIF), the number of colors used, or 0 for non-indexed pictures.

5.3.2.8 opus uint32 OpusPictureTag::data length

The length of the picture data in bytes.

5.3.2.9 unsigned char∗ OpusPictureTag::data

The binary picture data.

5.3.2.10 int OpusPictureTag::format

The format of the picture data, if known.

One of

• OP_PIC_FORMAT_UNKNOWN,

• OP_PIC_FORMAT_URL,

• OP_PIC_FORMAT_JPEG,

• OP_PIC_FORMAT_PNG,

• OP_PIC_FORMAT_GIF, or

.

The documentation for this struct was generated from the following file:

• /home/giles/projects/opusfile-0.4/include/opusfile.h

5.4 OpusTags Struct Reference

The metadata from an Ogg Opus stream.

#include <opusfile.h>

Data Fields

• char ∗∗ user_comments

The array of comment string vectors.

• int ∗ comment_lengths

An array of the corresponding length of each vector, in bytes.

• int comments

The total number of comment streams.

• char ∗ vendor

The null-terminated vendor string.

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

5.4 OpusTags Struct Reference 53

5.4.1 Detailed Description

The metadata from an Ogg Opus stream.

This structure holds the in-stream metadata corresponding to the ’comment’ header packet of an Ogg Opus stream.
The comment header is meant to be used much like someone jotting a quick note on the label of a CD. It should be
a short, to the point text note that can be more than a couple words, but not more than a short paragraph.

The metadata is stored as a series of (tag, value) pairs, in length-encoded string vectors, using the same format
as Vorbis (without the final "framing bit"), Theora, and Speex, except for the packet header. The first occurrence
of the ’=’ character delimits the tag and value. A particular tag may occur more than once, and order is significant.
The character set encoding for the strings is always UTF-8, but the tag names are limited to ASCII, and treated as
case-insensitive. See the Vorbis comment header specification for details.

In filling in this structure, libopusfile will null-terminate the user_comments strings for safety. However, the
bitstream format itself treats them as 8-bit clean vectors, possibly containing NUL characters, so the comment_-
lengths array should be treated as their authoritative length.

This structure is binary and source-compatible with a vorbis_comment, and pointers to it may be freely cast to
vorbis_comment pointers, and vice versa. It is provided as a separate type to avoid introducing a compile-time
dependency on the libvorbis headers.

5.4.2 Field Documentation

5.4.2.1 char∗∗ OpusTags::user comments

The array of comment string vectors.

5.4.2.2 int∗ OpusTags::comment lengths

An array of the corresponding length of each vector, in bytes.

5.4.2.3 int OpusTags::comments

The total number of comment streams.

5.4.2.4 char∗ OpusTags::vendor

The null-terminated vendor string.

This identifies the software used to encode the stream.

The documentation for this struct was generated from the following file:

• /home/giles/projects/opusfile-0.4/include/opusfile.h

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

http://www.xiph.org/vorbis/doc/v-comment.html

Index

Abstract Stream Reading Interface, 19
op_close_func, 20
op_fdopen, 21
op_fopen, 20
op_freopen, 21
op_mem_stream_create, 22
op_read_func, 19
op_seek_func, 20
op_tell_func, 20
op_url_stream_create, 22
op_url_stream_vcreate, 22

channel_count
OpusHead, 49

close
OpusFileCallbacks, 48

colors
OpusPictureTag, 52

comment_lengths
OpusTags, 53

comments
OpusTags, 53

coupled_count
OpusHead, 49

data
OpusPictureTag, 52

data_length
OpusPictureTag, 52

Decoding, 39
OP_ABSOLUTE_GAIN, 40
OP_HEADER_GAIN, 39
OP_TRACK_GAIN, 40
op_read, 40
op_read_float, 42
op_read_float_stereo, 44
op_read_stereo, 43
op_set_gain_offset, 40

depth
OpusPictureTag, 51

description
OpusPictureTag, 51

Error Codes, 7
OP_EBADHEADER, 8
OP_EBADLINK, 9
OP_EBADPACKET, 8
OP_EBADTIMESTAMP, 9
OP_EFAULT, 8
OP_EIMPL, 8

OP_EINVAL, 8
OP_ENOSEEK, 9
OP_ENOTFORMAT, 8
OP_EREAD, 8
OP_EVERSION, 8
OP_FALSE, 8
OP_HOLE, 8

format
OpusPictureTag, 52

Header Information, 10
OP_PIC_FORMAT_GIF, 11
OP_PIC_FORMAT_JPEG, 11
OP_PIC_FORMAT_PNG, 11
OP_PIC_FORMAT_URL, 11
opus_granule_sample, 12
opus_head_parse, 12
opus_picture_tag_clear, 16
opus_picture_tag_init, 16
opus_picture_tag_parse, 15
opus_tags_add, 13
opus_tags_add_comment, 13
opus_tags_clear, 15
opus_tags_get_track_gain, 15
opus_tags_init, 13
opus_tags_parse, 12
opus_tags_query, 14
opus_tags_query_count, 14

height
OpusPictureTag, 51

input_sample_rate
OpusHead, 49

mapping
OpusHead, 49

mapping_family
OpusHead, 49

mime_type
OpusPictureTag, 51

OP_ABSOLUTE_GAIN
Decoding, 40

OP_EBADHEADER
Error Codes, 8

OP_EBADLINK
Error Codes, 9

OP_EBADPACKET
Error Codes, 8

OP_EBADTIMESTAMP

INDEX 55

Error Codes, 9
OP_EFAULT

Error Codes, 8
OP_EIMPL

Error Codes, 8
OP_EINVAL

Error Codes, 8
OP_ENOSEEK

Error Codes, 9
OP_ENOTFORMAT

Error Codes, 8
OP_EREAD

Error Codes, 8
OP_EVERSION

Error Codes, 8
OP_FALSE

Error Codes, 8
OP_HEADER_GAIN

Decoding, 39
OP_HOLE

Error Codes, 8
OP_HTTP_PROXY_HOST

URL Reading Options, 17
OP_HTTP_PROXY_PASS

URL Reading Options, 18
OP_HTTP_PROXY_PORT

URL Reading Options, 17
OP_HTTP_PROXY_USER

URL Reading Options, 18
OP_PIC_FORMAT_GIF

Header Information, 11
OP_PIC_FORMAT_JPEG

Header Information, 11
OP_PIC_FORMAT_PNG

Header Information, 11
OP_PIC_FORMAT_URL

Header Information, 11
OP_TRACK_GAIN

Decoding, 40
op_bitrate

Stream Information, 35
op_bitrate_instant

Stream Information, 35
op_channel_count

Stream Information, 32
op_close_func

Abstract Stream Reading Interface, 20
op_current_link

Stream Information, 34
op_fdopen

Abstract Stream Reading Interface, 21
op_fopen

Abstract Stream Reading Interface, 20
op_free

Opening and Closing, 30
op_freopen

Abstract Stream Reading Interface, 21
op_head

Stream Information, 34
op_link_count

Stream Information, 32
op_mem_stream_create

Abstract Stream Reading Interface, 22
op_open_callbacks

Opening and Closing, 26
op_open_file

Opening and Closing, 25
op_open_memory

Opening and Closing, 25
op_open_url

Opening and Closing, 26
op_pcm_seek

Seeking, 37
op_pcm_tell

Stream Information, 36
op_pcm_total

Stream Information, 33
op_raw_seek

Seeking, 37
op_raw_tell

Stream Information, 35
op_raw_total

Stream Information, 33
op_read

Decoding, 40
op_read_float

Decoding, 42
op_read_float_stereo

Decoding, 44
op_read_func

Abstract Stream Reading Interface, 19
op_read_stereo

Decoding, 43
op_seek_func

Abstract Stream Reading Interface, 20
op_seekable

Stream Information, 31
op_serialno

Stream Information, 32
op_set_gain_offset

Decoding, 40
op_tags

Stream Information, 34
op_tell_func

Abstract Stream Reading Interface, 20
op_test

Opening and Closing, 24
op_test_callbacks

Opening and Closing, 29
op_test_file

Opening and Closing, 27
op_test_memory

Opening and Closing, 28
op_test_open

Opening and Closing, 30
op_test_url

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

56 INDEX

Opening and Closing, 29
op_url_stream_create

Abstract Stream Reading Interface, 22
op_url_stream_vcreate

Abstract Stream Reading Interface, 22
op_vopen_url

Opening and Closing, 26
op_vtest_url

Opening and Closing, 28
Opening and Closing, 24

op_free, 30
op_open_callbacks, 26
op_open_file, 25
op_open_memory, 25
op_open_url, 26
op_test, 24
op_test_callbacks, 29
op_test_file, 27
op_test_memory, 28
op_test_open, 30
op_test_url, 29
op_vopen_url, 26
op_vtest_url, 28

opus_granule_sample
Header Information, 12

opus_head_parse
Header Information, 12

opus_picture_tag_clear
Header Information, 16

opus_picture_tag_init
Header Information, 16

opus_picture_tag_parse
Header Information, 15

opus_tags_add
Header Information, 13

opus_tags_add_comment
Header Information, 13

opus_tags_clear
Header Information, 15

opus_tags_get_track_gain
Header Information, 15

opus_tags_init
Header Information, 13

opus_tags_parse
Header Information, 12

opus_tags_query
Header Information, 14

opus_tags_query_count
Header Information, 14

OpusFileCallbacks, 47
close, 48
read, 47
seek, 47
tell, 47

OpusHead, 48
channel_count, 49
coupled_count, 49
input_sample_rate, 49

mapping, 49
mapping_family, 49
output_gain, 49
pre_skip, 49
stream_count, 49
version, 49

OpusPictureTag, 50
colors, 52
data, 52
data_length, 52
depth, 51
description, 51
format, 52
height, 51
mime_type, 51
type, 50
width, 51

OpusTags, 52
comment_lengths, 53
comments, 53
user_comments, 53
vendor, 53

output_gain
OpusHead, 49

pre_skip
OpusHead, 49

read
OpusFileCallbacks, 47

seek
OpusFileCallbacks, 47

Seeking, 37
op_pcm_seek, 37
op_raw_seek, 37

Stream Information, 31
op_bitrate, 35
op_bitrate_instant, 35
op_channel_count, 32
op_current_link, 34
op_head, 34
op_link_count, 32
op_pcm_tell, 36
op_pcm_total, 33
op_raw_tell, 35
op_raw_total, 33
op_seekable, 31
op_serialno, 32
op_tags, 34

stream_count
OpusHead, 49

tell
OpusFileCallbacks, 47

type
OpusPictureTag, 50

URL Reading Options, 17

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

INDEX 57

user_comments
OpusTags, 53

vendor
OpusTags, 53

version
OpusHead, 49

width
OpusPictureTag, 51

Generated on Tue Aug 20 2013 13:38:33 for opusfile by Doxygen

	Main Page
	Introduction
	Organization
	Overview

	Module Index
	Modules

	Data Structure Index
	Data Structures

	Module Documentation
	Error Codes
	Detailed Description
	Macro Definition Documentation
	OP_FALSE
	OP_HOLE
	OP_EREAD
	OP_EFAULT
	OP_EIMPL
	OP_EINVAL
	OP_ENOTFORMAT
	OP_EBADHEADER
	OP_EVERSION
	OP_EBADPACKET
	OP_EBADLINK
	OP_ENOSEEK
	OP_EBADTIMESTAMP

	Header Information
	Detailed Description
	Macro Definition Documentation
	OPUS_CHANNEL_COUNT_MAX
	OP_PIC_FORMAT_UNKNOWN
	OP_PIC_FORMAT_URL
	OP_PIC_FORMAT_JPEG
	OP_PIC_FORMAT_PNG
	OP_PIC_FORMAT_GIF

	Function Documentation
	opus_head_parse
	opus_granule_sample
	opus_tags_parse
	opus_tags_init
	opus_tags_add
	opus_tags_add_comment
	opus_tags_query
	opus_tags_query_count
	opus_tags_get_track_gain
	opus_tags_clear
	opus_picture_tag_parse
	opus_picture_tag_init
	opus_picture_tag_clear

	URL Reading Options
	Detailed Description
	Macro Definition Documentation
	OP_SSL_SKIP_CERTIFICATE_CHECK
	OP_HTTP_PROXY_HOST
	OP_HTTP_PROXY_PORT
	OP_HTTP_PROXY_USER
	OP_HTTP_PROXY_PASS

	Abstract Stream Reading Interface
	Detailed Description
	Typedef Documentation
	op_read_func
	op_seek_func
	op_tell_func
	op_close_func

	Function Documentation
	op_fopen
	op_fdopen
	op_freopen
	op_mem_stream_create
	op_url_stream_vcreate
	op_url_stream_create

	Opening and Closing
	Detailed Description
	Function Documentation
	op_test
	op_open_file
	op_open_memory
	op_vopen_url
	op_open_url
	op_open_callbacks
	op_test_file
	op_test_memory
	op_vtest_url
	op_test_url
	op_test_callbacks
	op_test_open
	op_free

	Stream Information
	Detailed Description
	Function Documentation
	op_seekable
	op_link_count
	op_serialno
	op_channel_count
	op_raw_total
	op_pcm_total
	op_head
	op_tags
	op_current_link
	op_bitrate
	op_bitrate_instant
	op_raw_tell
	op_pcm_tell

	Seeking
	Detailed Description
	Function Documentation
	op_raw_seek
	op_pcm_seek

	Decoding
	Detailed Description
	Macro Definition Documentation
	OP_HEADER_GAIN
	OP_TRACK_GAIN
	OP_ABSOLUTE_GAIN

	Function Documentation
	op_set_gain_offset
	op_read
	op_read_float
	op_read_stereo
	op_read_float_stereo

	Data Structure Documentation
	OpusFileCallbacks Struct Reference
	Detailed Description
	Field Documentation
	read
	seek
	tell
	close

	OpusHead Struct Reference
	Detailed Description
	Field Documentation
	version
	channel_count
	pre_skip
	input_sample_rate
	output_gain
	mapping_family
	stream_count
	coupled_count
	mapping

	OpusPictureTag Struct Reference
	Detailed Description
	Field Documentation
	type
	mime_type
	description
	width
	height
	depth
	colors
	data_length
	data
	format

	OpusTags Struct Reference
	Detailed Description
	Field Documentation
	user_comments
	comment_lengths
	comments
	vendor

